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Abstract. Skin cancer is one of the most common types of cancer, and early detection 

is critical for effective treatment. This work compares three deep learning models 

for melanoma classification: a simple CNN, a CNN with Dropout, and MobileNetV2 

with transfer learning. All were trained on a public dataset of 10,000 images resized 

to 64×64 pixels. While this resolution improved training speed, it likely hindered 

MobileNetV2’s performance due to architectural constraints. We evaluated 

accuracy, precision, recall, and F1-score. Results show that lightweight CNN 

outperformed MobileNetV2, emphasizing the need to align input resolution with 

model architecture. 

1. Introduction 

 Skin cancer is one of the most common and potentially lethal cancers worldwide. Among 

its types, melanoma stands out due to its high mortality rate when not diagnosed early. 

According to the [World Health Organization 2025], early detection significantly 

improves patient survival rates and reduces treatment costs. Traditional diagnosis 

methods, based on clinical observation and histopathology, are effective but often time-

consuming and subject to human variability. 

  In recent years, Convolutional Neural Networks (CNNs) have shown great 

promise in medical image analysis, including skin lesion classification tasks [Santos 

2022], [Litjens et al. 2017], [Esteva et al. 2017]. Their ability to extract and learn complex 

visual features has led to significant improvements in diagnostic accuracy, sometimes 

surpassing human specialists [Haenssle et al. 2018]. 

  Previous studies using CNNs on ISIC datasets with 64×64 resolution images have 

already shown promising accuracy levels around 89% [Santos 2022]. Inspired by such 

results, this study explores alternative architectures and transfer learning approaches to 

improve performance under the same resolution constraint. 

  This study proposes a comparative analysis of three deep learning architectures 

applied to binary classification of skin cancer images (melanoma vs. non-melanoma): (i) 

a simple CNN, (ii) a CNN with Dropout regularization, and (iii) MobileNetV2 with 

transfer learning. All models were trained using the public "Melanoma Skin Cancer 

Dataset of 10,000 Images" [Javid 2022], resized to a resolution of 64×64 pixels. 



 

 

  The choice of this reduced input size aimed at accelerating training and reduce 

computational demands. However, this decision may have compromised the performance 

of MobileNetV2, a model originally evaluated using input resolutions ranging from 

96×96 to 224×224 pixels [Sandler et al. 2018]. As discussed later in this paper, this 

architectural mismatch potentially impacted on its classification ability. 

  The goal of this work is to analyze the performance trade-offs between lightweight 

CNNs and more complex transfer learning models under resolution constraints, 

contributing to the development of fast, accurate, and accessible diagnostic tools. 

2. Methodology 

2.1. Dataset and Preprocessing 

We used the public Melanoma Skin Cancer Dataset of 10,000 Images [6], which contains 

thermoscopic images labeled as either benign or malignant. The dataset was already 

organized into separate folders for training and testing. Specifically, the training set 

included 5000 benign and 4605 malignant images, while the test set included 500 images 

from each class. 

  All images were resized to 64×64 pixels and normalized to the [0, 1] range. The 

decision to use a reduced resolution was made to optimize training speed and 

computational resource usage, which is particularly important for lightweight models. 

However, this choice may have limited the performance of deeper networks such as 

MobileNetV2, which was originally evaluated with input resolutions ranging from 96×96 

to 224×224 pixels [Sandler et al. 2018]. 

2.2. Data Augmentation 

 To improve generalization and reduce overfitting, data augmentation techniques were 

applied during training using Keras' ImageDataGenerator. The transformations included 

random horizontal and vertical flips, slight zoom, and rotation. These augmentations 

aimed to simulate real-world variability in skin lesion images, improving robustness and 

model performance. 

2.3. Training Setup 

The training and test datasets were kept as originally provided by the dataset author, with 

no additional splitting or reshuffling. All models were implemented using the Keras API 

and trained using the binary crossentropy loss function and the Adam optimizer. The 

training process was configured with a batch size of 32 and allowed to run for up to 20 

epochs. To prevent overfitting, the EarlyStopping callback was employed, monitoring the 

validation loss with a patience of 3 epochs. 

  No explicit validation set was defined; instead, model performance was evaluated 

using the test set after training. The training history, including accuracy and loss over the 

epochs, was recorded for performance analysis and comparative evaluation between 

models. 

 



 

 

2.4. Model Architectures 

We trained and compared three deep learning models: 

I. Model A: Simple CNN 

A baseline architecture consisting of two convolutional layers with ReLU activation, each 

followed by max pooling. The output is flattened and passed through a fully connected 

layer with 64 units and ReLU activation. The final output layer uses a sigmoid activation 

function to perform binary classification. 

 

Figure 1. Architecture of Model A – Simple CNN 

II. Model B: CNN with Dropout 

 An extended version of Model A, with an additional convolutional block and a denser 

fully connected layer. A dropout layer was added after the dense layer to reduce 

overfitting and improve generalization by randomly disabling neurons during training. 

 

Figure 2: Architecture of Model B – CNN with Dropout. 

III. Model C: MobileNetV2 (Transfer Learning) 

MobileNetV2 is a pre-trained convolutional network originally designed for efficient 

classification on mobile devices [Sandler et al. 2018]. In this model, we used 

MobileNetV2 as a frozen feature extractor by setting its convolutional base as non-

trainable. The top layers were replaced with a global average pooling layer, followed by 

a dropout layer and a final dense layer with sigmoid activation for binary classification. 

All input images were resized to 64×64 pixels to match the previous models, although 

MobileNetV2 is typically optimized for higher resolutions. This architectural mismatch 

may have contributed to the lower performance observed in this model. 



 

 

 

Figure 3: Architecture of Model C – MobileNetV2 (Transfer Learning). 

 

3. Experimental Results 

This section presents the quantitative and visual results obtained from the training and 

evaluation of the three proposed models. The goal is to assess the classification 

performance of each architecture and compare their generalization capabilities under the 

same input resolution constraint (64×64 pixels). The evaluation was based on standard 

classification metrics and visual inspection of learning curves, confusion matrices, and 

prediction examples. 

3.1. Validation Curves 

The validation accuracy and loss curves over the training epochs are shown below for the 

three models. Model B (CNN with Dropout) demonstrated more stable training behavior 

and better generalization, while Model C (MobileNetV2) suffered from performance 

degradation, possibly due to its architectural reliance on higher-resolution inputs. 

 

Figure 4. Validation accuracy for Models A, B, and C. 



 

 

 

Figure 5. Validation loss curves for Models A, B, and C. 

  

3.2. Final Evaluation Metrics 

To quantify the classification performance, we calculated accuracy, precision, recall, and 

F1-score for each model using the test set. The results are summarized in the table below. 

Table 1. Evaluation metrics for melanoma class on the test set. 

  

 

Model B achieved the highest scores across all metrics, suggesting that the addition of 

dropout and a deeper convolutional structure helped improve generalization. In contrast, 

Model C underperformed despite leveraging transfer learning, likely due to its 

incompatibility with the reduced input size. 

3.3. Confusion Matrices 

Confusion matrices were generated to visualize the classification performance per class. 

Model B, showed in Figure 7, achieved the best balance between sensitivity and 

specificity, with fewer false negatives compared to Models A and C, like showed in 

Figure 6 and Figure 8. 



 

 

 

Figure 6. Confusion matrix for Model A. 

 

 

Figure 7. Confusion matrix for Model B. 



 

 

 

Figure 8. Confusion matrix for Model C. 

3.4. Predictions on Test Images 

To qualitatively assess model behavior, Figure 9 displays predictions from each model 

(columns) on the same set of test images (rows). Each row represents a single skin lesion 

(one benign and one malignant), and each column corresponds to a different model. The 

predicted class and associated confidence score are shown above each image. Correct 

predictions are displayed in blue, while incorrect predictions appear in red, allowing a 

clear visual comparison of the models’ performance on the same inputs. 

Figure 9. Predictions on test images by Model A, B and C. 



 

 

4. Discussion 

The results demonstrate that architectural simplicity, when well-regularized, can 

outperform more complex models under resolution constraints. Model B (CNN with 

Dropout) achieved the best overall performance, with 91.2% accuracy and the highest 

precision, recall, and F1-score, likely due to deeper feature extraction and reduced 

overfitting. 

Model A, despite its simpler structure, showed competitive performance (90.0% 

accuracy), reinforcing the effectiveness of lightweight CNNs for binary image 

classification tasks. 

In contrast, Model C (MobileNetV2) underperformed (86.6% accuracy), possibly due to 

its reliance on higher-resolution inputs. The reduced input size (64×64) may have limited 

its ability to extract meaningful features, despite using transfer learning. 

Visual predictions support these findings: Model C had more misclassifications, 

including confident errors. Overall, this study suggests that tailored CNNs may be more 

effective than pre-trained architectures when computational constraints and image 

resolution are limiting factors. 

5. Conclusion and Future Work 

 This study compared three deep learning models for melanoma classification using 

dermoscopic images resized to 64×64 pixels. Model B (CNN with Dropout) achieved the 

best performance across all metrics, confirming that architectural depth combined with 

regularization can significantly enhance generalization. 

Although MobileNetV2 is a powerful pre-trained model, its performance was limited by 

the reduced input resolution, highlighting the importance of aligning preprocessing 

choices with model design. 

Future work may explore higher-resolution inputs, fine-tuning of transfer learning 

models, and model deployment in real-world scenarios, such as mobile health 

applications or clinical decision support systems. 
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